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Field-theoretic methods are applied to a number of two-dimensional lattice models with 
Abelian symmetry groups. It is shown, using a vortex + spin-wave decomposition. that the Z, 
Villain models are related to a class of continuum field theories with analogous duality 
properties. Fermion operators for these field theories are discussed. In the case of the Ising 
model, the vortices and spin-waves conspire to produce a free, massive Majorana field theory 
in the continuum limit. The continuum limit of the Baxter model is also studied, and the 
recent results of Kadanoff and Brown are rederived and extended. 

I. INTRODUCTION 

There has been a substantial amount of progress recently in the analysis of two- 
dimensional lattice models with Abelian symmetry groups [l-5]. This class of 
models includes the planar model, the Ising model, and many others. The principal 
tool used is an extension of Kramers-Wannier-Kadanoff duality 16, 71 which 
catalogues excitations in terms of their vortex and spin-wave content. These methods 
have a natural extension to continuum field theories in two-dimensional space-time. 

Most of the lattice models which have been studied are closely related to a field 
theory whose Euclidean Lagangian density can be written as 

L = + (V#)’ + $ cos(2JqT) + 3 COS ( 1 f$ . (I.11 

The field I$ is an order variable describing local fluctuations, while T is the relatively 
non-local disorder variable dual to 6 It can be defined in Minkowski space as 

&x, t) = y  dy f  q4( y, t) - fX dy ;&v, t). (1.2) 
-1 --1’ 

The parameter a is the only length scale present, while p is an integer. The dimen- 
sionless variables y nd h, are the activities of vortices and spin-waves, respectively. 
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If y and h, are both set equal to zero, the free field theory of a massless scalar field 
is obtained. This is the continuum limit of the Gaussian model, and it is reviewed in 
Appendix A. If h, = 0, then L is essentially the Lagrangian of the sine-Gordon model. 
This is closely related to the planar model. A non-zero value of h, means that a p- 
fold symmetry-breaking external field has been applied. For example, p = 1 is 
analogous to an external magnetic applied to a spin system. 

In this paper I will primarily be concerned with the field theories associated with 
the Zi models, the Ising model and the Baxter model. The Z,” models are obtained 
from the better known Z, models by applying the Villain approximation [2-4]. In the 
next Section, I show how field-theoretic methods can be applied to the analysis of 
these models. In particular, I discuss their duality properties, demonstrating that frac- 
tional vortex operators are needed to implement duality in correlation functions. I 
also define fermion operators for these models. The Zy model is better known as the 
Ising model, and it is Studied in Section III. The results of Section II are used to show 
how the vortex and spin-wave operators combine to produce the field theory of a free, 
massive Majorana fermion in the continuum limit [8,9]. Section IV studies the 
continuum field theory associated with the Baxter and Ashkin-Teller models. The 
recent results of Kadanoff and Brown [5] are rederived and extended. 

II. PROPERTIES OF THE Z; MODELS 

This section deals with the Zi models in two dimensions. These models arise 
naturally as the Villain approximation to the more familiar Z,, models, and are 
closely related to the planar model. I begin by showing how the Zz models arise 
naturally from the Z,, models. Following the work of Kadanoff [2,4] and Elitzur er 
al. [3], the Z; models are given a simple form in which the topological structure of 
the relevant excitations is manifest. I then write down a Euclidean field theory with 
the same structural properties. From this, I deduce duality relations and write down 
for future use a formula for the fermion operators associated with the models. 

, The Zp models are lattice models which have a classical two-component spin of 
unit length at each lattice site i, described by angle $i. The Z, models differ from the 
planar model in that $i can take on only p different values: 

#i = 2nni/P, (2.1) 

where n, = I,..., p, Formally, the Z, models can be obtained by placing the planar 
model in infinitely strong pfold symmetry-breaking fields. The Z, model is better 
known as the Ising model. 

The Euclidean action for the Zp model is given by a conventional nearest-neighbor 
interaction: 

1 [ 27c 
A,=Jf c 1 -cos - n, nJ . 

(ii) P 
( - .)]I (2.2) 
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The partition function Q, is a function of the dimensionless coupling constant J, and 
is given by 

Qp= N, 2 exp -Al[qil. 
Inil 

(2.3) 

where the sum is over all sets of integers between 1 and p, and N, is a normalization 
factor. 

The Zi models are obtained by applying the Villain approximation [26] to Q,,. In 
this case. the approximation is 

where J, and A are functions of J, such that J, + J, and A + 1 as J, --t 00. For the 
case p = 2, the approximation can be made exact by choosing A and Jz to satisfy 

A y exp 
1 
+ J;(27rZ)2 = I, 

I 

A ‘T exp qJi(hl+ n)’ =czJf. 
7 I 1 

(2.5) 

(2.6) 

In general, the Zi mode1 is not the same as the corresponding Z, model. For 
example, the Z, mode1 is equivalent to two decoupled Ising models, but the Z:’ model 
is a particular case of the Ashkin-Teller model 141. 

I can now obtain the Zg models as a approximation to the 2, models. At every 
nearest-neighbor interaction, the Villain approximation is made, introducing integer 
bond variables sij. The factors of A can be absorbed into a new normalization 
constant N,. Thus, the partition Q; of the Z; mode1 is defined by 

where the Euclidean action is given by 

A,=+J; \‘ 
cii, 

[ + (ni - ?Zj) - 27lIS;j] ‘. (2.8) 

The Poisson summation formula can now be used to eliminate the orginal n, 
variables. This formula can be written as 

(2.9) 
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From this, it follows that 

(2.10) 

At each lattice site i the discrete variable n, is replaced by new variables mi and #i; 
mi is an integer, while $i takes on all values between 0 and 27r. The new form for Qi 
is 

(2.11) 

where the Euclidean action A, has the form 

A, = C fJ:[#i-#j-2~~ij]* +C @mj#j* (2.12) 
( ij) i 

I now argue that it does no harm to allow the 4,. integrations to run from -co to 
+co. Suppose I let some particular dj to run from -27rL to 27zL. This multiplies Q, 
by a factor of 2L; it does not change correlation functions at all. The same change in 
range of integration can be made for all Qlj’s, and then the limit L -+ co can be taken; 
N, can swallow the infinity. Therefore, Qi is just 

If all the mis are set equal to zero, Eq. (2.13) is the Villain approximation to the 
planar model. The role of the mis is to explicity break the planar model symmetry. 
As in the planar model, one can distinguish between vortex and spin-wave 
excitations. A non-zero mj behaves as a source for a spin-wave excitation at the 
lattice site j. Non-zero su)s give rise to vortex excitations, which live on the dual 
lattice. 

If all the siis are set equal to zero, still another representation of the Villain 
approximation to the planar model is obtained [ 11: 

A,= 2 ~J~[(~-#j]‘+~@mj+j. 
(ii) i 

(2.14) 

This is a manifestation of the self-duality of the 2; models in two dimensions. As a 
consequence, the vortex and spin-wave activities are equal. This has been proven by 
Kadanoff [2] and Elitzur et al. [3]. 

Armed with this information, I can now write down a Euclidean Lagrangian 
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density L, which defines an ultraviolet-regulated continuum field theory with the 
same structure as the Zi model. It is given by 

“, 2(y)": 
L,=t(Vf$)‘+ 5 2pos ifm) + y y-cos(27mJ&. (2.15) 

m=l n-1 a 

The dimensionless coupling constant J equals J,, while a is an ultraviolet cutoff with 
dimensions of length. The dimensionless number y can be considered to be the 
activity of both spin-waves and vortices, but it is not a free parameter of the theory. 
It parametrizes the relation of the bare mass in the Lagrangian to the cutoff a- ‘, and 
is a function of J. It is also extremely useful as a bookkeeping device. The non-local 
field & is defined in Minkowski space in the usual way: 

$(x,t)= (.a,d?,fqi(yJq d?,~&vJ). 

- x -T 

If I define a functional integral R, as 

(2.16) 

(2.17) 

and expand in a power series about y = 0, I obtain an expression for R, very much 
like that for Qi. The cos((pm/J) F) terms behave like sources for spin-wave 
excitations, while the cos(2n~J~) terms act as sources for vortices. This expansion is 
discussed in Appendix B. Qi and R, differ is only two ways: In the continuum theory, 
the excitations are not restricted to discrete locations, and the Laplacian replaces the 
corresponding lattice operator. As in the case of the planar model and the sine- 
Gordon theory, the critical properties of the two models are the same. 

It is straightforward to check that L, has the same properties as the Zi models. To 
lowest order in y, the spin-wave operator cos(p#/J) will be relevant if 

(p/J)’ < 8x3 (2.18) 

while the vortex operator cos(2rrJfi is relevant for J in the range 

(274' < 8~. (2.19) 

For p > 5, there will be an intermediate region for which both operators are 
irrelevant. To zeroth order in y, this range is 

(2.20) 

In this region, the Zi models have the infrared behavior of the Gaussian model. It can 
be shown that the L, models lead to the same renormalization group equations as the 
corresponding lattice models. 



218 MICHAEL C. OGILVIE 

As usual, it is possible to define spin-wave and vortex operators. Spinwave 
operators S, are given by 

S,=expyd. (2.21) 

Vortex operators are defined as 

V, = exp [ i2mJqTj (2.22) 

It is easy to check that this field theory has the same duality properties as Zi. This 
follows from the duality properties of the free massless scalar field, as discussed in 
Appendix B. Order by order in y, there is manifest duality between d and 6, so that 
the generating functional R, is invariant under the change 

2nJ * p/J. (2.23) 

This duality extends to correlation functions if a fractional vortex operator is 
introduced. I define 

so that the correlation functions are invariant under the duality transformation 

2nJlp4+ l/J, (2.25) 

srn ++ vqfj7* (2.26) 

It is interesting to note that the S,,,‘s and V,,,P’s obey a variant of t’Hooft’s 
order-disorder commutation relations [lo]. The contraction of a spin-wave operator 
Q,(X) with a vortex operator V,,(y) gives rise to a term 

exp 
[ 
$59(x-y) ) 

I 
(2.27) 

where 0(x - y) is the usual arctangent function, that measures the angle (x - y) 
makes with some fixed axis. It is easy to see that 

s,(x) V,,(y) = ev fi y [ I V,,(Y) s,(x). (2.28) 

The sign ambiguity is due to the cut in the arctangent function. This relation can also 
be derived at equal times in Minkowski space, using the canonical commutation 
relation and definition (2.24). Equation (2.28) is not surprising, given the inter- 
pretation of the spin-waves and vortices as electric and magnetic charges [2]. 
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It will be convenient in the next section to have available the fermion operators 
introduced by Mandelstam [ 111. As discussed, for example, by Swieca [ 121, a whole 
class of fermion operators can be made from d and & defined by 

where fi is arbitrary and U, is a constant spinor of the form 

The constant M has dimensions of mass. In this case, the logical choice is 

P= PIJ 

(2.29) 

(2.30) 

(2.31) 

by analogy with the sine-Gordon model. 

III. THE ISING MODEL 

I will now apply the results of the previous section to the two-dimension Ising 
model. In this case. the Lagrangian is L,, given by 

L? =+(v#)z +$cos 
( ) 
%p f $cos(2nJ&. (3.1) 

In writing (3.1), I have made a few changes from Eq. (2.15). First I have dropped all 
those cosine operators which are irrelevant near the critical point. Secondly. I have 
noted explicitly the inherent ambiguity in the relative sign of the vortex and spin-wave 
operators. 

The field theory described by (3.1) is not the continuum limit of the Ising model. 
which is obtained by taking a to zero while keeping the physical mass fixed. The 
Lagrangian Lz is associated with an ultraviolet-regulated field theory designed to 
reproduce the relevant topological features of the Ising model, including the duality 
between order and disorder operators. It is, therefore, somewhat more 
phenomenological in nature rather than fundamental. 

There are a number of approaches which can be used to analyze the model 
described by (3.1). One method is to generalize L, to 

L; = +(v# + J$ cos 
t 1 
$fl * $cos(27LI&. (3.21 

This Lagrangian describes the planar model in a two-fold symmetry breaking field. It 
is expected to lie in the same universality class as the two-dimensional Ising model. 
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Jose et al. [ 1 ] have developed renormalization group equations for this model for y 
and h, small. These and similar equations have proven very useful in the study of the 
Baxter and Ashkin-Teller models [4, 51. 

The approach I will follow in this section is more modest. The generating 
functional Z associated with L, is essentially the partition function of the Ising 
model. By manipulating L,, I will show that in the continuum limit Z is precisely the 
generating functional of a Majorana fermion field theory, in agreement with the work 
of Schultz et al. [8]. 

As usual, duality locates the critical point exactly. It is obtained from Eq. (2.23), 
which locates the critical J, at 

J, = l/h. (3.3) 

At this point, L, is manifestly self-dual. The conventional critical value of J, is given 
by 

e -2J:z fi- 1. 

To see that (3.3) and (3.4) are equivalent, note that J, and J2 are related by (2.5) and 
(2.6), which state that 

e -zJ;= 
\/r; (3.5) 

when 

J2 _ ’ R(k) 

2 2nK(k)’ 
(3.6) 

where K and K’ are the usual complete elliptic integrals. Use of the exact relation 

K’(3 - 2fi) = 2 
K(3 - 2fi) 

shows that (3.4) implies 

J; = l/z. (3.8) 

I will now take the cutoff a to zero, holding the physical masses fixed. On dimen- 
sional grounds, a physical mass M, must be related to a and J by 

Mp = a - ‘F(J). (3.9) 

Therefore, J must be taken to J, as a goes to zero. The resulting field theory will have 
a single free parameter, a mass which sets the scale of the theory. It is easy to see 
from L, what the Lagrangian density 1, of this theory must be; it is given by 

L, = f(V@)’ + m2 cos 64 f m2 cos &ii&, (3.10) 
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FIG. I. The physical mass M, as a function of J for fixed n. The dashed line represents the scaling 
limit J = .I,. a = 0. M, finite. 

All necessary renormalizations are understood, although I have not indicated them 
there. 

The significance of this limiting theory is easy to explain. It should be, and is, iden- 
tical to the continuum or scaling limit of the two-dimensional Ising model. In Fig. 1, I 
have plotted M, versus J for constant a. The dotted line at J =J, represents the 
scaling limit which has (I = 0 but M, finite. This field theory is Euclidean-invariant at 
all length scales. The point J = J,, M, = 0 represents a massless field theory. There 
are two different ways this point can be approached: one can take a to zero and then 
M,, or vice versa. The fundamental hypothesis of the field-theoretic approach to 
critical phenomena is that these two limits commute, giving rise to the same 
correlation functions and critical indices. Just as the original lattice theory had one 
relevant parameter, J,, the scaling limit theory will also have one relevant parameter. 
the physical mass Mr. 

Equation (3.10) is less than transparent. It becomes much more meaningful when 
L, is written in terms of fermion fields. Care must be exercised, for some of the usual 
equivalences [ 131 do not hold. For example, the curl of 4, s,,.P$, us no longer 
conserved, due to the cos \/;r;;F term in L,. Therefore, the curl of $ cannot be iden- 
tified with a conserved fermion current. However, the relation between the 4, $, and 
the fermion operator w, Eq. (2.29), still holds, at least order by order in M2. As usual, 
the cos fi 4 term is equivalent to a fermion mass term 

m2 cos &r 4 = MI&I. (3.11) 
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where the mass h4 has replaced m* as the free parameter. The cos fi $’ term is less 
familiar, but Eq. (2.29) can be used to show that 

m2 cos \/47c fF= M(yl y2 + yf,‘y:). (3.12) 

The relative sign of w, v2 and w$w: is fixed by hermiticity. Putting these two 
equivalences together, I have 

m*[cos fi4 f ~0s fiF1 =Wy/:v2 + wtwI f wlw2 * w:w:l. (3.13) 

Equation (3.13) is nothing but a mass term for a Majorana fermion. To see why 
this is so, consider an ordinary Dirac fermion theory. The Lagrangian density L, is 

L,=piy. av-hfgy. (3.14) 

In the y-matrix representation being used [ 141, the y-matrices are real. As a conse- 
quence, charge conjugation is given by 

W’YC=YSW+. (3.15) 

Using this transformation rule, I can write down Majorana fermion operators which 
are self-conjugate; they can be defined as 

(3.16) 

(3.17) 

It is easy to show that 

v/a,8 vA'a.W =ww* <v/:w: +v*vd, (3.18) 

so that Eq. (3.13) describes a Majorana mass term. Therefore, I can write L, as 

(3.19) 

Of course, ws could have been used instead of v/~. The unfamiliar factor of i occurs 
because I,?, is not independent of vA ; I have resealed M to accommodate this factor. 

Equation (3.19) is the central result of this section, but it is hardly new. It was 
shown in 1964 by Schultz et al. [8] that the two-dimensional Ising model can be 
regarded as a lattice field theory of a free Majorana fermion. Since that time, this 
aspect of the model has been used extensively, culminating in the work cf Sato et al. 
[ 151, who derived the Ising model correlation functions in the continuum limit using 
the Majorana fermion representation. What is surprising is that the Majorana field 
theory falls out of the spin-wave-vortex formalism so easily. 
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IV. THE BAXTER AND ASHKIN-TELLER MODELS 

The Baxter model [ 16 1, also known as the eight-vertex model, can be written as 
two interacting Ising models [ 171. Consider the unit cell shown in Fig. 2. The spins 
u, and o3 are coupled in the usual way, as are u2 and u4. In addition. there is a four- 
spin coupling. Thus, the contribution of this cell to the reduced Hamiltonian can be 
written as 

-K,a,u,-K2u2u,-~u,a2a,u,. (4.1) 

The free energy of this mode1 was determined by Baxter [ 16 1: from this he was able 
to show that the critical exponent a is a continuous function of A. 

A closely related model is the Ashkin-Teller mode1 [ 181, which can also be 
understood using Ising models [ 191. At every lattice site i, there are two Ising spins 
al” and u!*‘. The reduced Hamiltonian is given by a sum over nearest-neighbor pairs: I 

H,, = \’ [-K,++’ - K,u~*‘~;” - K,~)“~~“u)2’u~2’]. (4.2) 

Like the Baxter model, the Ashkin-Teller mode1 reduces to two decoupled Ising 
models when the four-spin coupling (K,) is zero. The critical indices of this mode1 are 
also continuous functions of K,. Not surprisingly, the Baxter mode1 and the 
Ashkin-Teller mode1 are dual to one another 1201. 

A great deal is known about the field theory associated with the continuum limit of 
two decoupled Ising models whose nearest-neighbor couplings, K,K,, are equal [ 211. 
Given the results of the previous section. it is easy to see why this is so. Two free 
Majorana fermions can be used to form one Dirac fermion. Thus, the field theory 
associated with the doubled Ising mode1 is that of a free, massive Dirac fermion: 

L,=p(iy.ii-M)y/ (4.3) 

The order and disorder variables survive the continuum limit. I denote the two 
order fields as u”‘(x) and u’*‘(x), while the dual disorder fields are p”‘(x) and P”‘(X). 
Certain composite fields have very simple representations. In particular, ~“‘a’* and 
P”(“d2’ are given by 

u D E u(“u(*) = sin fi 4, (4.4a) 

iu,-p iu (1) (2) = cos d&j, (4.4b) 

where $ is the scalar field associated with the free Dirac field theory in the usual way 
[ 13, 21 1. Duality is implemented in this field theory by a yS transformation on w. 
u/ --t ys w, which changes the sign of the mass. Under this duality transformation, u,, 
and p, transform as 

‘D -+pD, (4Sa) 

PD*--(~D* (4Sb) 
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FIG. 2. The Baxter model couplings. K, and K, are next-nearest-neighbor couplings, while K, 
couples the four spins of a unit cell. 

Given the success of this approach, I am going to write down a field theory 
Lagrangian which should describe the general continuum limit of the Baxter and 
Ashkin-Teller models. It is given by 

(4.6) 

This can be proven for two special cases. When g is set equal to zero, L reduces to 
two free Majorana field theories, associated with two noninteracting Ising Models. If 
MA = M,, L can be identified with the continuum limit of the Baxter model in the 
case K, = K, [22]. Even when MA #MB, L is formally equivalent to the general 
Baxter model; this can be shown using the arguments of Berg [23]. One simply shows 
that (PA v~)(I,?~v/B) is essentially a four-spin coupling. A final justification comes 
from exhaustion: L is the most general interacting local Lagrangian that can be made 
from two Majorana fields. 

Consider now the special case of L given by the restriction MA = M,. In that case 
L is equivalent to the Massive Thirring model Lagrangian: 

L=+?(iy.B-M)y-fgj,j,. (4.7) 

In turn, this is equivalent to the sine-Gordon theory [ 131, with Lagrangian 

L = + (a#)’ + ; cos pq5. (4.8) 

The coupling constants /I and g are related by 

1 ++g. (4.9) 
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It is easy to show that p is related to the coupling constant J used in the previous 
section by 

/I = 2/J. (4.10) 

Luther and Peschel (221 have shown that un can be identified for arbitrary p: 

Because duality is implemented by a yr transformation on the fermion fields, the 
associated boson field transforms as 

4 + 4, + qp. (4.12) 

It follows that the disorder field ,u,, dual to on must be given by 

pu, = sin 
i i 
$0 (4.13) 

It is also interesting to find the continuum limit E of the energy density E,. It is 
defined as 

Ei = E;” + Et*’ = \‘ ,J;“+’ + ,;*,,j*‘, 

n.n. 

where the sum is over the nearest neighbors of i. The fact that M is proportional to 
T - T, implies E is essentially WV, or 

E - cos(p#). (4.15) 

Note that the identification of the sine-Gordon theory with the Baxter model breaks 
down when /3’ reaches 871, the point at which u/w becomes marginal. 

Further progress is made possible by considering a dual transformation on IJJ~ 
only. This corresponds to making a dual transformation on one Ising sublattice, 
which turns the Baxter model into the Ashkin-Teller model. This dual transformation 
has the effect of flipping the signs of M, and g. It is not hard to show, using (2.29), 
that this model is equivalent to a sine-Gordon theory with Lagrangian 

(4.16) 

Note that in the field theory of the Ashkin-Teller model, it is W,, wA - tj7, vR that is 
relevant. It becomes marginal when j3’ = 2x, and is irrelevant for p’ < 27~. 
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The dual transformation replaces a(” by ,u(‘), but leaves u(I) alone. Therefore, it is 
a(‘),~(*) that now have simple representations as functions of 6 

pun = sin 

( ) 
+q . 

The operator which is multiplied by T - T, in L’ is not E”’ + EC*‘, but 

~=E(‘)-E(*)=cos + , ( 1 

(4.17) 

(4.18) 

(4.19) 

I can now summarize these identifications in the form of a dictionary, Table I, 
which gives the continuum limit of lattice observables as boson operators. These iden- 
tifications are consistent with the work of Kadanoff and Brown, who used operator 
product expansions to study the critical line h4 = 0 around p’ = 4~. What has been 
gained here is that these results are now proved valid for M # 0 as well. For the 
convenience of the reader, I list in Table II the equations which relate /I, g, and J, and 
also the parameter K used by Kadanoff and Brown [5]. 

One final question must be answered: What is the relation between the Baxter 
model four-spin coupling 1 and the parameters g and p? A relation was derived by 
Kadanoff and Brown using the operator product expansion at the decoupling point 

TABLE I 

Sine-Gordon Baxter 
operator 0 operator 

0 t],, is defined by the a = 0 theory: limlx-,+,,(~(x) O(y)) -IX - Yl-“‘. 
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TABLE II 

287 

J’ = K 

M = 0, g = 0 151. It turns out that a direct proof can be given which is valid for 
arbitrary M and g > (-n/2). The essence of the proof is contained in the work of 
Luther and Peschel [22]. It rests on a series of equivalences, which are 

Baxter Model = XYZ Spin Chain 

= Lattice Massive Thirring Model 

+ Massive Thirring Model 

(Continuum Limit) 

= Sine-Gordon Theory. 

The first equivalence was proven by Sutherland [24/, who showed that with an 
appropriate choice of parameters, the Hamiltonian of the XYZ spin chain commutes 
with the transfer matrix of the Baxter model. The Hamiltonian of the XYZ spin chain 
is given by 

H xyz=-yJxs;sjrt, +J,s;s;+, +J,s;sj+,. (4.20) 
I 

The correct choice of parameters J,, JY, and Jz is 

J, = 1, (4.2 la) 

J,. = sinh 2K, sinh 2K, + cash 2K, cash 2K, tanh 21. (4.2 1 b) 

J7 = tanh 2A. (4.21~) 

After a Jordan-Wigner transformation, the XYZ spin chain becomes a lattice 
version of the Massive Thirring model. 

A continuum theory is obtained from the lattice theory by taking J, to 1 with 
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physical masses fixed. The correct relationship between J, and g was given by 
Liischer [25], who showed 

Using Eq. (4.9), this is 

or 

.I,=(-1)cosn (n + 2g) 
(27r + 2g) * 

(4.22) 

Jz=(-l)cos [n (I-&)], (4.23) 

(4.24) 

A similar result can be derived indirectly for the Ashkin-Teller parameter K,. 
Wegner [20] has shown K, and 1 are related by duality according to 

tanh(2KJ = 
- tanh(21) 
1 - tanh(U) * 

(4.25) 

Using (4.24) and the duality transformation p + 47cIp, the relation between /I and K, 
is found to be 

K,=+tanh-’ 
cos(27r2 Jp’) 1 cos(2d/j?2) - 1 . 

(4.26) 

APPENDIX A 

This appendix is intended as a brief introduction to the two-dimensional free 
massless scalar field, and makes no pretentions to rigor. This model field theory is of 
interest here because it is the continuum limit of the Gaussian model (after the usual 
Wick rotation to Euclidean space). The Gaussian model is defined on a square 
lattice; at each lattice site i, there is a real variable di which ranges between plus and 
minus infinity. The Euclidean action A, for the Gaussian model is a simple 
quadratic: 

The parameter J is a dimensionless coupling constant. The continuum limit of the 
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Gaussian model is the free massless scalar field theory, with (Minkowski-space) 
action 

A = d*x + (a#)‘. 
.I 

(A.2 

As usual, the free field 4 can be decomposed as 

4(x) = .I (4&2) 
laEe-ik..T + af eik.-ye (A.3 1 

There is another field, dual to 4, which is also canonical and constructed from the 
same creation and annihilation operators as 4. It is defined as 

where e(k’) is * 1, according to the sign of k’. The fields 4 and $ are related by 

a, q = &,,.a% (A.51 

where crL, is the usual totally antisymmetric tensor [c,,i = -siO = +l]. 
The fields Q and Jare not themselves observables. It C$ were observable, it would be 

the Goldstone boson associated with the spontaneous breaking of the continuous 
symmetry 4 + q5 + A. This is forbidden in two-dimensional field theories 1271. so the 
symmetry must be manifest. However, exponentials of d and 6, i.e., coherent states, 
are observables. It is convenient to define operators 

B,(x) = exp ia#(x). (A.6a) 

8,( .v> = ev VM ~1. (A.6b) 

Normal-ordering will always be understood. 
There is a simple master formula for the vacuum expectation value of products ot 

0,‘s and go’s. It is 

A and B are defined by 

(A.8a) 
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B= -f Pk. 
k-l 

(A.8b) 

The Kronecker deltas, S,,, and 6e,0, insure that the continuous symmetries of the 
theory are manifest. The two-point functions d, and d, are given by 

(A.9a) 

(A.9b) 

In (A.9a), ~1 is an arbitrary mass parameter; its value can be changed by a 
multiplicative renormalization of 8, and gB. 

Of particular interest are the spin-wave and vortex operators defined by 

S,=expy(, (A.lOa) 

V, = exp i2nnJfZ (A.lOb) 

After continuation to Euclidean space, the general spin-wave and vortex correlation 
function is given by 

+ x nkn,2n121n~lyk-y,l+C-imink8(xi-yk) . 
k<l i,k I 

(A.1 1) 

The arctangent function t? is defined (up to a multiple of 27r) as 

B(x) = tan-‘(x*/x2). (A.12) 

The spin-wave operator S, is defined with a factor of J-’ so that it has the same 
large-distance behavior as the Gaussian model observable exp[im#j]. The vortex 
operator, on the other hand, is defined with a factor of 27rJ so that mixed vortex-spin- 
wave correlation functions do not change under a rotation of 271. These vortex 
operators are the continuum limit of similar objects found in the Gaussian model. 

The spin-wave and vortex operators possess an important duality property. As can 
easily be seen from Eq. (A. 1 l), correlation functions are invariant under the duality 
transformation 

V”++S,, (A.13) 

2nJz * l/27& (A. 14) 
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APPENDIX B 

Consider a model field theory with Euclidean Lagrangian density 

The generating functional Z for this model can be written as a path integral: 

Z can be thought of as the partition function for the continuum limit of a Gaussian 
model to which a p-fold symmetry-breaking field has been applied. It is easy to 
expand Z as a power series in h,. 

d2X, . . . d2x, ( 1’i s,(Xj) + S; (X,)]) 
j-1 

=1+2hi[$$exp[& 

U3.3) 

A similar expansion can be performed for the model described by Eq. (1. l), using the 
formula (A. 11) of Appendix A. 

From this expansion follow the duality relations described in the text. Order by 
order in y and h,, one works with correlation functions of the Gaussian model, which 
obey the duality relations (A.I3) and (A.14). It follows easily that the model 
described by Eq. (1.1) is invariant under the duality transformation 

2nJ2 t-) p72nJ2, 

y-h,. 

U3.4) 

(B.5) 
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